Adaptive Particle Swarm Optimization (APSO) for multimodal function optimization

نویسندگان

  • Md. Sakhawat Hossen
  • Fazle Rabbi
  • Md. Mainur Rahman
چکیده

This research paper presents a new evolutionary optimization model based on the particle swarm optimization (PSO) algorithm that incorporates the flocking behavior of a spider. The search space is divided into several segments like the net of a spider. The social information sharing among the swarms are made strong and adaptive. The main focus is on the fitness of the swarms adjusting to the learning factors of the PSO. The traditional Particle Swarm Optimization algorithms converges rapidly during the initial stage of a search, but in course of time becomes steady considerably and can get trapped in a local optima. On the other hand in the proposed model the swarms are provided with the intelligence of a spider which enables them to avoid premature convergence and also help them to escape from local optima. The proposed approaches have been validated using a series of benchmark test functions with high dimensions. Comparative analysis with the traditional PSO algorithm suggests that the new algorithm significantly improves the performance when dealing with multimodal functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

Harmonics Estimation in Power Systems using a Fast Hybrid Algorithm

In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...

متن کامل

Adaptive hybrid optimization strategy for calibration and parameter estimation of physical process models

A new adaptive hybrid optimization strategy, entitled squads, is proposed for complex inverse analysis of computationally intensive physics-based models. Typically, models are calibrated and model parameters are estimated by minimization of the discrepancy between model simulations characterizing the system and existing observations requiring a substantial number of model evaluations. Squads is...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009